Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xuan Huang, Jia-Geng Liu and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean σ (C–C) = 0.002 Å Disorder in main residue R factor = 0.041 wR factor = 0.112 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Benzimidazolium 3,5-dihydroxybenzoate benzimidazole

The crystal structure of the title compound, $C_7H_7N_2^+$.- $C_7H_5O_4^-$. $C_7H_6N_2$, consists of discrete cations, anions and neutral molecules, with two of each species in the asymmetric unit. Through hydrogen bonding and π - π stacking the chemical components link to each other to form a sandwichlike supramolecular crystal structure.

Received 30 March 2006 Accepted 30 March 2006

Comment

During an investigation of the nature of aromatic stacking, we reported the crystal structure of benzimidazolium 3,5-dihydroxybenzoate (Huang *et al.*, 2006). In a similar experiment, we recently obtained the title compound, (I), which has a different but related composition.

The structure of the asymmetric unit is shown in Fig. 1; it contains two cations, two anions and two neutral molecules. The small differences between C-O bond distances for the carboxylate groups (Table 1) confirms their deprotonation. A

ellipsoids (arbitrary spheres for H atoms). Dashed bonds indicate

Figure 1 The asymmetric unit of (I), shown with 30% probability displacement

disordered H atoms.

© 2006 International Union of Crystallography All rights reserved

Acta Cryst. (2006). E62, o1833-o1835

Figure 2

A diagram showing the partially overlapped arrangement of neighboring bzim rings [symmetry codes: (ix) 1 - x, -y, 1 - z; (x) 1 - x, 1 - y, 1 - z].

Figure 3

A packing diagram showing the sandwich-like supramolecular crystal structure.

difference Fourier map clearly shows half-protonation of all the benzimidazole units in the structure, with atoms H13, H23, H33 and H43 disordered, each with half-occupancy, generating alternative N-H···N and N···H-N arrangements of the cations and neutral molecules.

A partially overlapped arrangement is observed between bzim and Hbzim⁺ (benzimidazolium) units (Fig. 2). The faceto-face separations of 3.502 (10) Å between the N11-bzim and N11^{ix}-bzim units and 3.520 (12) Å between N21-bzim and N21^x-bzim suggest the existence of π - π stacking between parallel aromatic rings (for symmetry codes, see Fig. 2). The centroid-to-centroid separation of 3.8743 (12) Å between the C36-ring and N41-ring also indicates π - π stacking between nearly parallel bzim and Hbzim⁺ units [dihedral angle = 6.88 (7)°].

Extensive hydrogen bonding is observed in the crystal structure (Table 2), involving N and O atoms as both donors and acceptors. Through this hydrogen bonding and $\pi - \pi$ stacking, the chemical components link to each other, forming a sandwich-like supramolecular crystal structure (Fig. 3).

Experimental

Sr(NO₃)₂ (1 mmol), Na₂CO₃ (1 mmol), benzimidazole (2 mmol) and 3,5-dihydroxybenzoic acid (2 mmol) were dissolved in a waterethanol solution (20 ml, 4:1). The mixture was refluxed for 2 h and then filtered. Single crystals of (I) were obtained from the filtrate after two weeks.

Crystal data

$C_7H_7N_2^+ \cdot C_7H_5O_4^- \cdot C_7H_6N_2$	Z = 8
$M_r = 390.39$	$D_x = 1.331 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 15.070 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 13.353 (2) Å	T = 295 (2) K
c = 19.358 (4) Å	Chunk, yellow
$\beta = 90.262 \ (7)^{\circ}$	$0.41 \times 0.32 \times 0.20 \text{ mm}$
$V = 3895.3 (11) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: none
61723 measured reflections

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.041$
$wR(F^2) = 0.112$
S = 1.05
8912 reflections
524 parameters
H-atom parameters constrained

8912 independent reflections 5990 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.048$ $\theta_{\rm max} = 27.5^{\circ}$

$w = 1/[\sigma^2(F_o^2) + (0.0601P)^2]$
+ 0.0155P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0026 (3)

Table 1

Selected bond lengths (Å).

O3-C57	1.2495 (14)	O7-C67	1.2591 (14)
O4-C57	1.2620 (14)	O8-C67	1.2623 (14)

Table 2

H	lyd	rogen-	bond	geome	try	(A,	°).
---	-----	--------	------	-------	-----	-----	-----

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$		
0.92	1.76	2.6730 (13)	170		
0.90	1.80	2.6989 (13)	172		
0.96	1.70	2.6573 (12)	173		
0.95	1.72	2.6610 (13)	168		
0.86	2.11	2.8490 (16)	144		
0.86	1.86	2.7038 (19)	168		
0.86	1.89	2.7374 (17)	167		
0.86	1.85	2.7038 (19)	174		
0.86	1.91	2.7541 (17)	167		
0.86	1.85	2.700 (2)	170		
0.86	2.07	2.8855 (16)	159		
0.86	1.87	2.727 (2)	171		
Symmetry codes: (i) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2};$ (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2};$ (iii) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (iv) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2};$ (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2};$ (vi) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2};$ (viii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{3}{2};$ (v)					
	$\begin{array}{c} \hline D-H \\ \hline 0.92 \\ 0.90 \\ 0.96 \\ 0.95 \\ 0.86 \\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Hydroxyl H atoms were located in a difference Fourier map and refined as riding in their as-found relative positions, with $U_{iso}(H) = 1.2U_{eq}(O)$. A difference Fourier map clearly shows peaks bonded to all N atoms of bzim. H atoms on N atoms of bzim were placed in calculated positions, with N-H = 0.86 Å, and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(N)$; atoms H13, H23, H33 and H43 are disordered and their occupancies were fixed at 0.5. Other H atoms were placed in calculated positions, with C-H = 0.93 Å and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the National Natural Science Foundation of China (No. 20443003).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Huang, X., Liu, J.-G. & Xu, D.-J. (2006). Acta Cryst. E62, 0276-0278.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.